Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
نویسندگان
چکیده
Open-burning fires play an important role in the earth’s climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m−2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m−2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m−2), while over Boreal Asia the overestimation is +43 % (−1.9 W m−2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.
منابع مشابه
Present-day climate forcing and response from black carbon in snow
[1] We apply our Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled to a general circulation model with prognostic carbon aerosol transport, to improve understanding of climate forcing and response from black carbon (BC) in snow. Building on two previous studies, we account for interannually varying biomass burning BC emissions, snow aging, and aerosol scavenging by snow meltwater. We ass...
متن کاملUncertainties in global aerosols and climate effects due to biofuel emissions
Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertaint...
متن کاملEffects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions
It is known that aerosol and precursor gas emissions over East Asia may be underestimated by 50% due to the absence of data on regional rural and township industries. As the most important element of anthropogenic emissions, sulphur dioxide (SO2) can form sulfate aerosols through several chemical processes, thus affecting the regional and global climate. In this study, we use the Community Atmo...
متن کاملGlobal impact of smoke aerosols from landscape fires on climate and the Hadley circulation
Each year landscape fires across the globe emit black and organic carbon smoke particles that can last in the atmosphere for days to weeks. We characterized the climate response to these aerosols using an Earth system model. We used remote sensing observations of aerosol optical depth (AOD) and simulations from the Community Atmosphere Model, version 5 (CAM5) to optimize satellitederived smoke ...
متن کاملAn Approach to Estimate Global Biomass Burning Emissions of Organic and Black Carbon from Modis Fire Radiative Power
Title of Dissertation: AN APPROACH TO ESTIMATE GLOBAL BIOMASS BURNING EMISSIONS OF ORGANIC AND BLACK CARBON FROM MODIS FIRE RADIATIVE POWER Evan A. Ellicott, Doctor of Philosophy, 2009 Directed By: Professor Chris O. Justice Department of Geography Biomass burning is an important global phenomenon affecting atmospheric composition with significant implications for climatic forcing. Wildland fir...
متن کامل